
Analysis for the Calendering o f  Bingham Plastic Fluids 

INTRODUCTION 

Calendering is a continuous process used to  produce a sheet or film of uniform thickness. The 
theoretical analysis regarding the mechanism in calendering as i t  stands today was developed by 
Gaskell' and McKelvey2 for Newtonian and power-law fluids. The analysis was extended by Bra- 
zinsky et  al.3 Alston and Astil14 studied hyperbolic tangent viscosity model fluids. Kiparissides 
et al.? using finite element methods, studied the flow behavior of Newtonian and non-Newtonian 
fluids. Dobbels e t  aL6 and Kiparissides e t  aL7 solved the nonisothermal case using orthogonal col- 
location and finite difference methods, respectively. Two comprehensive reviews concerning the 
isothermal case are also available in recent 

The objective of this short note is to derive the flow mechanism of the calendering of Bingham 
plastic fluids and to investigate the effects of fluid physical properties on calendering operation. 

MATHEMATICAL APPROACH 

The governing equations for the conservation of mass and momentum in calendering have been 
developed e l s e ~ h e r e ~ - ~ ~ ~ * ~  using a lubrication approximation.1° For a Bingham plastic material, 
the shear stress obeys 

du 

dY 
_ -  - 0 if(Tyxl < T O  

For symmetric calendering, the velocity profile can be obtained by solving the above equations with 
governing equations subjected to the boundary condition U = UO a t  y = h ( x ) :  

1 d P  70 Ux = Uo + -- b2- h2(x)] - - [y - h(x) ]  
2 p  dx P 

fory 2 yo 

1 dP 
2p dx 

U x =  U o - - - - b ~ - h ( x ) ] ~  fory S y o  

(3) 

(4) 

where P is the pressure in the gap region. With reference to Figure 1, UO is the velocity of roller, 
h(x)  is the distance from the central line to the roller surface, approximated2*s by 

h(x)  = Ho(1 + x2/2H&) 

yo is the upper boundary of the plug flow region, defined as 

' "0 I \ 

Fig. 1. Notations for the flow analysis in calendering. 

(5) 
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Fig. 2. Typical dimensionless velocity profiles. [A = 0.25, TO = 1 X los dyn/cm2 ( -  - -), TO = 1 X 
lo7 dyn/cm2 (---), R = 10 cm, U = 20 cm/sec, Ho = 0.001 cm, g = 1 X lo4 P.] 

which is derived by momentum balance equation. In reality, the maximum value of yo should be 

If the sheet comes off the rollers with the same speed UO, application of the mass continuity 
h(x) .  

equation yields the following equation: 
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DIMENSIONLESS DISTANCE X 
Fig. 3. Effects of To and power-law index n of the pressure profile. (1) TO: 5.0 X lo6; (2) TO: 2.5 

x lo6; (3) T ~ :  0; (4) N: 0.75; (5) N :  0.5. (A = 0.3, R = 10 cm, UO = 40 cm/sec, Ho = 0.01 cm, I.( = 
1 x 104 P.) 
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R E S E R V O I R  H E I G H T  T O  G A P ( H t H o )  

Fig. 4. Exit height (HlIHo) as a function of upstream reservoir thickness (HIHo) for Newtonian 
( e l  and non-Newtonian fluids. [Bingham plastic fluids (-): R = 10 cm, Ho = 0.001 cm, ~ o / p U o  
(dyn sec/P cm3) = 250 (line 2)  and 500 (line 3). Hyperbolic tangent model (- - -) of Alston and Astill: 
R = 1.25 cm, Ho = 0.004 cm, UO (cm/sec) = 12.7 (line 4) and 50.8 (line 5 ) .  Power-law fluid (---): 
R = 10 cm, HO = 0.01 cm, n = 0.25.1 

Since yo is a function of dP/dx, eq. (7) is a nonlinear differential equation which can be solved using 
an iterative procedure. The pressure can be obtained by the integration of eq. (7) with the following 
boundary condition: 

a t x  = XO: P =  0, U = UO (9) 

This boundary condition implies that yo = h(n0) at  x = XO. Therefore, the separation point of the 
sheet from the roller occurs at 

xo = X(2H,$)1’2 

The result also applies to Newtonian and power-law fl~ids.2,8,~ 

RESULTS AND DISCUSSION 

Some typical velocity profiles are shown in Figure 2. The dimensionless coordinate X is defined 
as 

X = X / ( ~ H , $ ) ‘ / ~  

Here 3 1  is the “contact” point where P = 0, and ?i = X is the “leave-off’ point where P = 0.” The 
velocity profiles around Ir = -A are flat. The dotted lines shown in Figure 2 are the trace of yo for 
different TO. As 70 is increased, the dotted line position increases. 

Figure 3 shows the effects of TO and the power-law index on the pressure distribution in calendering. 
As TO increases, the calender pressure increases. The total force required to clamp the rollers is the 
integral of the calender pressure over the entire gap region. Therefore, greater forces are required 
to clamp the rollers in calendering of the Bingham palstic fluids than the forces needed for Newtonian 
and power-law (n 5 1) fluid systems. It is noteworthy that pressure derivative near X = -X is so 
low that yo[= h(x)]  and dP/dx cannot be calculated using eq. (8). However, this region is so narrow 
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that the pressure curve is approximately symmetrical to the region where f = -A.  Thus, we may 
neglect the integral that is in this region. 

In Figure 4, H1IHo (exit height to gap height) is plotted against HIHo (reservoir height to gap 
height) for Newtonian and non-Newtonian fluids. The calendering of Newtonian fluid is a special 
case of the calendering of power-law fluid ( n  = 1) and Bingham plastic fluid (TO = 0). When the 
ratio HIHo is kept constant, the calendering of Newtonian fluid produces higher values of H d H o  
than those produced by calendering of power-law fluid (n  5 1) and Bingham plastic fluid. In addition, 
the relationship of H1IHo vs. HIHo of a Newtonian fluid is independent of the roller speed, whereas 
it is dependent on the power-law index n for power-law fluids5 and the parameter TdpUo for Bingham 
plastic fluids. 

For hyperbolic tangent viscosity model fluids: the slope of this curve ( H J H o  vs. HIHo) decreases 
when the roller speed is increased, i.e., the thickness of the film produced becomes smaller at  a higher 
roller speed. An interesting feature in calendering of the Bingham plastic fluids is that the slope 
of this curve is a monotonically decreasing function of the parameter ~ o / p U o .  This fact implies that 
the sheet thickness becomes larger when the roller speed is increased. Furthermore, the viscosity 
of the Bingham plastic material has the same effect as velocity on calendering operation. The above 
analyses indicate that the material properties would influence quite strongly the operation variables 
in calendering processing. 

The author thanks Professor M. E. Ryan for helpful discussions. 
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